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A computationally efficient and exact method of symmetrizing a
complote set of angular functions using Gaussian integration is pra-
sented. This technique will be useful in situations such as crystal field-
type calculations, full potential electronic structure calcutations, and
wherever symmetrized functions of a given ireducible representation
are needed. As an example, combinations of spherical harmonics trans-
forming as the completely symmetric irreducible representation are
given for all the 32 crystallographic point groups in three dimensions.
'€ 1994 Academic Press, Inc,

INTRODUCTION

The use of symmetrized functions in solid state physics is
nearly as old as the subject itself. Early on Wigner. von
Neuman, Weyl, and others demonstrated [ 1] the usefulness
of group theory in solid state physics. A non-empty collec-
tion of nxn rotation matrices that satisfly the group
postulates is called a faithful representation of a crys-
tallographic point group, if at a given point, the
n-dimensional crystal lattice transforms into itself under the
action of an arbitrary member of the collection and this
collection contains all such rotations. This requirement of
leaving the lattice invariant, severely restricts the number of
otherwise infinite number of finite groups that can be
formed using these rotation matrices. In three dimensions,
this number is 32, while in two dimensions it equals 10.

It is clearly useful to work with Tunctions that transform
according to the symmetries of the lattice as many of the
carly researchers of solid state physics (e.g., vou der Lage
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and Bethe [2]) realized in the 1930s and 1940s. In later
work, Altmann, Cracknell, Bradley [3,4], and others
extended some of these early ideas to generally practical and
computational ievels. Some of the computational techni-
ques used to oblain these symmetrized functions, however,
are not always straightforward, in a computational sense.
As an example, when rotations of axes are involved,
specification of Euler angles may be necessary.

What we are about to describe is a simple algorithm for
obtaining these symmetrized functions using a Gaussian
integration technique. It will be useful in situations that
involve crystal field-type calculations, full-potential
methods, and in constructing eigenfunctions that transform
according to a given irreducible representation. This
method, we belicve, is computationally superior and less
cumbersome, compared to other techniques involving Euler
angles. It also has the flexibility of calculating symmetry
coefficients for arbitrary axes. Although this technique can
casily be generalized, we limit our discussion to three-
dimensional crystalline symmetries, in particular to the
determination of the completely symmetric lattice har-
monics of the 32 crystallographic point groups.

Meost importantly, this method should be regarded as an
allernate way of carrying out symmeltrization, that can be
casily automated. For the symmetrized spherical harmonics
shown in our tables, the technique turns out to be exact.
With automation, we have an efficient scheme that can be
uscd to handie, for example, higher { vatues, or nonstandard
axes i#s demonstrated here.

SYMMETRIZATION

The basis for symmetrization is the theorem that if I,
', .., ' arc all the distinct irreducible representations
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of a group of operators R, then any function ¥ in the space
of the operators R can be decomposed into a sum

F= z Z (J)

Jj=1v=1

(1)

where £} belongs to the vth row of the jth irreducible
representation of dimension /;, Combining this result

with theorems regarding the properties (especially
orthogonahty) of representations, yields
Lo .
f9 =Y rYR)LRE, (2)
R

where # 15 the order of the group. The action of the
operators R on a function (in the active representation) is
RF{r)=F(R 'r). (3}
If a complete set of functions is substituted into the above
equations, then the set of /' will be a complete set of
symmetrized basis functions.
At this point we specialize to the case of the spherical
harmonics Y,,(f), which form a complete set over angular
functions. Generalizations to other complete sets is

straightforward. The symmetrized functions for a given /can
be written as

U] ‘
Kh r Z cmz Yfm

=E"Z “](R)r\' YI;((Rilf)‘ (4)
R

If Fis given as an arbitrary combination of ¥,,’s, then
applying Eq. (2) will generate the symmetrized basis func-
tions needed. Equivalently, as in Eq. (4), we can apply the
projection operator given in Eq.(2) to each Y, (u=
—1, .., 1) separately and keep only the non-zero functions.
In this case, the lattice harmonic coefficients are given by

, [ ,
# =<5 FUORY*
Com (1) h% (R),

x| di Y3.0) Y, (R™1F). (5)

By considering all values of u, a set of symmetrized basis
functions will be generated.

The coefficients of all the lattice harmonics that transform
according to a given irreducible representation can be
generated by this procedure. In the (rather common) case
that there are more than one symmetrized. function that
transform according to a given irreducible representation,
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orthonormalization can be carried out using the standard
Gram-Schmidt procedure. The standard way of calculating
the integral in Eq. (5) involves the use of Euler angles. What
we propose is to use Gaussian quadrature to directly and
exactly calculate this integral. The advantage of this method
is that once given a representation of the rotation matrices
R, the integrals are obtained quite simply. As an example
where this feature is important, consider the dénsity or
potential in a complicated crystal structure. These functions
transform according to the completely symmetric represen-
tation of the space group. Locally about each site, the point
group symmetry will be a subgroup of the global space
group symmetry, but often with rotated principal axes com-
pared to the standard settings. While it is obviously possible
to determine the Euler angles, the method suggested in this
paper needs only the representations of the R operators in
the global coordinate system and the positions of the sites to
generate the local point group symmetry and the corre-
sponding lattice harmonics. This simplification allows the
group theory to be done casily and exactly by computer.

GAUSSIAN INTEGRATION

Gaussian quadrature is an efficient method of numeri-
cally evaluating a definite integral [5]. In contrast to New-
ton—Cotes-type integration methods in which the integral is
approximated by the sum of the integrand evaluated at
equally spaced points and multiplied by properly chosen
weights, in Gaussian gquadrature methods, both the
abscissas and the weights in the approximation can be
chosen, effectively doubling the number of degrees of
freedom. The method is closely tied to a set of polynomials
orthogonal over a weight function W(x)} in an interval
{(a, b); the abscissas are the roots of the polynomialis and the
weights are related to the derivatives. Thus, an N-point
approximation has the important property that

b N
| W) flydex ¥ owifx) (6)

“ i=1

is exact if f{x) is a polynomial of order 2N — 1 or less. (It can
be shown that the error term that is associated with this
approximation is proportional to the 2Nth derivative of f
evaluated at some point inside the interval (a, b)). As an
example, any definite integral j[l f(x) dx, of a well behaved
function f, may be approximated by the above formula with
weights w; given by

wy=2/{(1— a)(Pi ()}, (7)
The Pys are derivatives of Legendre polynomials and the
a;s are the roots of Pys.

As discussed in the previous section, any rotated ¥, can
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be expressed in terms of spherical harmonics of the same /.
Thus the integrand in Eq. (5) consists of terms of the form

241 j(I—m)!{{—m) -
dn N (I+m) (+m)! j dx P7ix)
xpmmj dg e =, (8)

The integral over ¢ is related to the discrete Fourier trans-
form, as well as to Gaussian quadrature. The number of
uniformly spaced points (with uniform weights) necessary
to exactly evaluate the ¢ integral is determined by the maxi-
mum values of the integers m’—m, via the Nyquist fre-
quency. The result is, of course, 274, ,,,.. Thus the numerical
integral projects out the m = m’ component.

Given that m = »’, it is simple to show that P{"(x) P} (x)
is a polynomial of order /+{': Since

_ x2)m;’2

PT(x)=(-1)"(1

dx™ ®)

then

m m

PT(x) PT{x)=(1 = x*y"—— P (XY= Prix), (10)

dx"
which is a polynomial of order 2m+ (I—m)+ (/'—m)=
[+ !'. Thus Gaussian integration will give exact results for
integrals of the type in Eqs. (5) and (8} if the weight function

is chosen as W(x}=1 for the @ (or x=cos ) angular
integration, as long as the number of quadrature points ¥

TABLE ]

Triclinic Groups: Lattice Harmonics

1. Point group C, (1)
Harmonics 1-256
m=10 Yo

m#0 —{Yfm (=1)" Y}

il -

Vim—(=1)" ¥}

2. Point group C, (1)
Harmonics t-120, [even

m=0 Y1

m#0 = Y+ (=" Y, .}

%...

Yo (=10 Y,

i -
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TABLE 1l

Monoclinic Groups: Lattice Harmonics

3. Point group C, (2)
Harmonics 1-128
m=0 Yi
1

7

m=24,.. Yt Yoo}

i
ﬁ {Yn‘m - Yt‘—m}
4. Point growp C,, (m)
Harmonics 1-136, [+ meven
m=40 Y
1
m0 Z ot 1 Vi)
\/—{Y.'m (—I)mYI m}
5. Point group Cs;, (2/m)
Harmonics 1-64, [even
m=0 ¥
1
m=24,.. —= Y+ ¥in)
V2
i
ﬁ {¥Yiu—Yi_m}
TABLE II1

Orthorhombic Groups: Lattice Harmonics

6. Point group D, (222)

Harmonics 1-64

m=>0, [even Y
If
m=2,4, ﬁ(ylm""(_l}f Y.'—m)
7. Point group C,, (mm2)
Harmonics 1-72
m=0 Yo
1
m=14, . —= (Yt Y.
NG
8. Point group Dy, (mmm)
Harmonics 1-36, [even
m=0 Yo
1
m=124, .. (Yt Yo}

7
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TABLE IV

9. Point group C, (4)
Harmonics 1-64
m=0

m=43, ..

10. Point group S, (4)
Harmonics 1-64
m=0, [even

m=26,., [odd

m=4 8 .. [even

11. Point group C,;, (4/m)

Harmonics 1-32, [even

m=0

m=4,8, .

12. Point group D, (422)
Harmonics 1-32

m=0, Ieven

m=48, ..

13. Point group C,, (4mnt)

Harmonics 1-40

m==0

m=4,8, ..

14. Point group D,, (42m)

Harmonics 1-36

m=1{0, {even

m=26,.., [odd

m=4,8, .., [even

Yoo

1
— Y+ Y,
2{f 1=m)

7

i
—= Y=Y

N

Y.'U
1
=AY+ Y )
7
Y= Y¥,0)
\/5 fm f—m
t
_'(Yfm+ Yi—m}
J1
i
——(Ylm_ Y.'—m]
2
Y.'"
Ly, +¥,_.)
ﬁ. im i=m
i
—= Y=Y

(Yeu—Yi_m)

(¥t ¥, p)

SERN

15. Point group D, (4/mmm)

Harmonics 1-20, [ even

m=40

m=4,8, ..

(Yot ¥}

Sl &

satisfy /+ [’ < 2N. This choice corresponds to the standard
Gauss-Legendre quadrature formulas. Generalization to
products of more spherical harmonics is straightforward.

TABLES OF SYMMETRIZED HARMONICS

Qur tables give the symmetrized combinations of spheri-
cal harmonics that transform according to the completely
symmetric irreducible representations for the 32 crys-
tallographic point groups in three dimensions. These so-
cailed lattice harmonics can always be chosen to be real. In

TABLE V¥

Trigenal Groups: Lattice Harmonics

16, Point group C;43)
Harmonics 1-86
m=0 Y
1
2

Y= —1)" ¥,_,)
2

7

m=3, 6, (Y1".+(_l)m Y.'—m)

17. Point group C5, (3}
Harmonics 1-40, /even
m=0 Y
1
NG

S (Yo (=1} ¥, )

7

m=13,6,.. (Y, +(-1)y"Y,_,)

8. Point group D, (32)
Harmonics 1-43

m=0, feven Yo

m=3,6, ..

9. Peint group C,, (3m)
Harmonics 1-51

m=0 Yo
m=136,.. —= Y+ ¥, )
7
20. Point group D, (3m)
Harmonics 1-24, /even
m=0 Yo
i

N

m=3,6,.. (Yt Y, )
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TABLE Vi

Hexagonal Groups: Lattice Harmonics

21. Point group C, (6) 24. Point group D¢ (622)
Harmonics 1-44 Harmonics 1-22
m=0 Yi m=0, [even Yio
m=6, .. ﬁmﬁ Yi_m) m=6 r'—J(Y,(,+(—t}’ Y1 e)
V2
ﬁ (Y=Y, ) 25. Point group C, (6mm}

22. Point group Cy; (6) Harmonics 1-30

Harmonics 1-46, !+ meven m=0 Yu
1
m=0 Yo m=6 —= Y+ ¥ 4)
2
1 \/_
m=36,.. —= Y+ {(=1)"¥,_,)
ﬁ 26. Point group D, (6m2)
i Harmenics 1-27, [+meven
’_(Y;‘m_(_ l)m Y.'—rn)
NE m=0 141
1
23. Point group Cg, (6/m) m=3,6, .. ﬁ (Yo +{=1)" Y, )
Harmonics 1-22,  [even
=0 Yoo 27. Point group Dy, {6/mmm)
1 Harmonics 1-15, /even
m=56 —= Y+ Yi_)
ﬁ m=0 Y
i 1
‘\/_E(Ym*n—a) m=6 ﬁ(yns* Yise)
TABLE VII
Cubic Groups: Lattice Harmonics
28. Point group T (23) ; 7 7
Harmonic 8 Z{ ?(Y94_Y94)—\/;(Y934Y9s)}

1 Yy

; i 13 3
3 L(Ynk Y;-z] 9 Z{\/;(Y%_ Yafe)—\/;(yqz" Yq—z)}

Ve

4 85 19
1 5 —d 1=y - 1=y Y
3 —E{ﬁ Yw+\/;(Y4,,+ }’4_4}} 10 16{ 3 (Yioi0+ Yio-10) 6( ws T Yio-6)
247
1 -
4 "__{\/g{ybﬁ—i'Yﬁ—ﬁ)_\fll(Y62+Y6—2)} - 3 (Ytuz+yttx—1)}
J32
I 1 f6s 1 f187
5 Z{ﬁ Yar—+/7 (Yes + Yo_o}} 11 g{ % Yioo /I (¥iog+ Y19,4)+5\/—3—(Y108+ Y,H)}
A AT (¥e— (Yo~ i (1 /133 l o=
6 \/4_8{ (Y= Yy} + /13 (Y= Yr5)) 12 é{i T(Yma—Y11710)+§\/27(Y1m—Yu—e)

1 14 1 /195 85
7 g{\/ﬁ Yso"‘\/;(}s‘a*Ys—4)+§,f7(yss+ya—s)} ' +\/;(Y111‘Y11-2)}
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TABLE VII—Continued

21

22

171 /676039 i 1245157
L B il VT I fut el Y
T3 {5 prY3 Y1.0+10 22 (Yiat Yo a)

1 177 a1
‘*1_0' — (Yi+ Yia_al+3 \/?(sz“‘ YlZl?)}

\/——{ AY 891 Yllﬂ \/_(Y124+ y12 4

1259

*Z — (Vi + Yoo s}}

%{@(yuw+ le_w)_\/lzﬁ()’lzﬁ+ Fraze)
+\/£37(Y.32+ Y{z_g)}

i f391 187
m{ T(Yl.’\l(l_ Fia_i0) + T(YIS(:_ Yia_g)
=95 (V52— Yis_s) }

1
S_Z{Q Y]m \/42 (Yia+ Yieoa)

247 1 [2185
+,,‘T(Y145+ Y14—s)+‘2',,‘—3‘“(y1412+ Y]a—u)}

1365 5
'—{ — (Vs + Fraoia)— \/E(Ymo"' Y1)

64
253 7429
= (Yrae+ Yig_e)— \/ (Yt Y 2)}

i) j6s —
§{— T(Ylsu— Y15712}—\/21 {(Yiss— Yis_35)

1 /23
+§ _2'(Y|54Y15—4)}

i 2639
7l {\/ 685 (Y514 — YIS—IA)+\/ 137 (Yisio— Yis_sa)

95381

8871
137 e (Yiss— Yis_o) + (Ylsz |5—2)}

i 1307 .
3 2_’4{ _1'2_(}1510_Yis_zo)—i\/399(Y156—Ylsié)

143
+, /=3 (Y5 — Yu—z)}

29. Point group T, (m3)

Harmonic

1

2

12

Yoo
1 5
\/———*_12 ﬁ Yoot 5(Y44+ Yi_d)
1
E {\/E(Yee"' Yafe)_\/ﬁ(ysz"' Yo o)}
~

1
Z{ﬁ Yoo - /T (Yot Yo_a)}

1 = 14 1 /195
g{ 33 Y30+ ?(Yg4+ YS—4}+§ —2—(Ygs+ Ygﬁg)}

Te {\/—(wa"' Yo m)*\/ Yioo+ Yio_e)
247
- HT {Yiat+ Ylo—z)}

1 65 187
g{ ra Yoo+ /_ (Vi Yio_a)+3 \/3 (Y108+Y10—8)}

1 )1 /676039 1 /245157
_6{‘5."‘%— Yuu"‘m,JT(ym‘F Yi2_4)

1 fitn 4t
+ﬁ TN {(Yig+ ¥ g)+3 \/?(le12+ Yn-lz)}

1 1
5—\/4—1 {Z 891 Yuo—\/gl (Y2 + Y124}

12597
+Z —— (Vi +¥pa s)}

209
TE (Y1210+ Yi2_10) =" Y126+ Yiaos)

17
+ ‘5‘()’122 + ¥ s)

1| [13es 5
o _Z‘(YM:A""YM-M]* (_’(Y1410+ Yiaoio)

253 742
—,IT(Y146+ Y b= —— Yo+ ¥, z)}

1 595
EE{ =N 140+ VA2 (Yo + Vg 4}

247 1 /2185
+, fT (¥rag+ ¥iy_g) +§\/T (Y2 + Y14—12)}

30. Point group O {432)

Harmonic

1

Yo

1 S
2 ﬁ{ﬁ Y40+\/;(Y44+ Y44)}
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TABLE VII—Continued

1 Bk 3
3 Z{ﬁym*ﬁ“"@t"' Ye_ab} 7 Z{\/;(Y%Yq_a)\g(i’gz—n_z}}
1 f14 195 t f65 1 [187
4 {\I Yoot (Ya4+ Yy 4}+ (Ysa+ Ya_ a)} 8 §{ ?Yloo"‘\/“(Y104+Ym_4)+§\/'3_(yms+ Yw-s)}
i i }1 /133 1
5 = ," (Y‘Jd_YD 4)“f(y9s Yo_s) 9 L4 —— (Yo=Yl =27 (Y= Yioe)
4 B2V 3 2
! 1 [187 85
6 { Y100+\/—(Y104+ Yio_s)+ 2\/T(Y1°8+ YIO—S)} + TS—(YUZ— Y“z)}
1)1 /676039 1 /245157 1 1 /676039 1 (245157
P i =y v, LI SR L AL .
T {5 26 Tty Ty (Tt Yl 0 3 {5,/ Sa Yt gg g (YisF Yiaoe)
177 A 177
+10 ~—(Vi+ ¥, s}+ (Y121'>+Y12 12)} +10 (lea"' Yiog)+3 \/*(leu"" Yo 12)}
8 _{ V89 Voo~ /91 (Yioat+ ¥i2os) 11 ,_{ V891 Y — ﬁ(ym"‘ Yi_4)
12597 12597
+Z —— (Vi + ¥p s]} 7 —— (Yiy+ Yo 3)}
i 253 ] 391 187
9 '—{" > (Yiaa— Y5 12}—\/5(Y135‘Y13 8) 12 d {,,‘ (Y= Yoo+ = (Yiza— Yiae)
8\/5 2 16\/_ 2
5 /19 .
-3 /7(1’[34— Y13_4)} ~ 95 (Y1 YISZ)}
1 595 1 595
10 E{ 3 Y1m+ VAY u+ Yiua) 13 ﬁ{ 3 Y140+ </ 429 (Yiaa+ Yia_s) -
247 i 2185 247 1 j2185
+, #T(Yms'*' Y14-3)+5\/ (Yiapp+ Yig 12)} 7T Gt Ve o) +3, /== (Yant Ym—u)}
i |1 /65 - 2639
tt é{i f?[sz— Yls-u)'—\/u (Yiss— ¥is g} 14 {\/E(YISH Yis- 14)+\/137 (Yiso= ¥is-0)
1 /23 95381 88711
+§\/;(Y154Y15-4)} + . 37 (Yis—Yis g)+ W(Ylszyls—z)}
. ] 4. 1 =
3t. Point group T, (43m) 15 ! 80 — (¥ 50— Y,S_m)——\/399{Y156—Y15_6}
, 2. /274 2
Harmonic
14
1 Yoo - (¥Y2— Yls—z)}

i
2 —(Yn_ Y3~2)

J2 32. Point group O, (m3m)
g "
4 ‘1—,{\/5 Yoo— /7 (Yoit Yo_u)} 2 \/;13{\/7 Y4u+\/§()’44+ Y4_4}}
5 f AT O CREANIETE SRS SENY _ 3 2 Ve Tt Vo))

19 1 14 1 fi9s
6 %{ 33 Yt (Yga+ Yy a)+ (Ygs+Ys a)} 4 g{\/ﬁ YBD-&-\/;(YM'F Ys—4]+§\/T(Yss+ Ygﬁs)}
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TABLE VII—Continued

1 65 1 f187
5 g{— EY1m+~-’“(Y1N+Y10—4)+5\/T(Y103+Y“]-E)}

{ /67603
177 5 41
+10 —— (Yis+ Yo ) +35 ,/?(Y1212+ le—lz)}

245157
5 it Yizoa)

? { 89 Y — \/_(Y124+Y12 a)

§5./4
! 1259
+Z" (Vig+ ¥Yiau s)}
1 595
8 ﬁ{ 3 Ymo+ \/42 (Yiaa+ Yia_4)
247 1 218
+ (Yms"' Vi) + 3 — (Yt V- 12)}

this case, rather than using the set {¥,,,u=—/ .. [}, in
Eq. (5), we usc the set of real functions composed of the real
and imaginary parts of the Y.’ ie, {RY,,3Y,, u=

.» 1}, which assures that each combination of (complex)
spherical harmonics is real. The number and form of the
completely symmetric harmonics up to /=15 are given,

TABLE VIII

An example with Nonstandard Axes: D4y

Harmonics 1-13

m=0, [even Yy

Other harmonics are of the form {e(f, m) ¥, + c*(, m) ¥;_ .} with

(1, m) ot m)

3,2 é{3\/§+fﬁ}
215{7\/%—512\/5}
5,2 %{3 %+i\/§}

4.4

L 1
7.6 E{m\é—:zzﬁ}
1 1
E{?\/;_nzﬁ}
8,8 ! 527\[ 168 /2
' 625 '

8.4

Note. The harmonics have been constructed (upto /= 8) for the point
group D, using a nonstandard set of axes. The mirror planes that con-
tain the special z axis (for D,;) in Table IV, have been rotated by an
angle 7/4 +tan~'(2) about z, to obtain a new set of x and y axes.

581/112/2-6

with the z axis choosen to be the special axis, if one exists.
However, even with this choice, there may be an additional
freedom for choosing the x and .the y axes. For the
tetragonal point group D,,, we have provided such an
example. In Table I'V, symmetrized harmonics for D, with
respect to a standard set of axes are given, while in
Table VI, symmetrized harmonics for the same point
group with respect to a nonstandard set of axes are shown.
In the trigonal and hexagonal groups, in particular, there is
also additional freedom to choose a setting. Although we
have picked a given setting, this may not be the setting of
interest in other cases—it is precisely because of such
ambiguities in tables that a simple, computationaily fast,
and exact method for determining these coefficients is
needed. In the tables we have converted the numerical
values of the coefficients to analytic expressions (up to an
arbitrary factor of +1) for ease of use; these values,
however, were determined using the numerical algorithms
described in this paper.

SUMMARY AND CONCLUSIONS

A method for the determination of symmetrized functions
based on Gaussian integration has been presented. Given
matrix representations of the rotation-translation operators
of a (space) group, it is straightforward to obtain the lattice
harmonics that transform according to the local point
group, i.e., it is possible to do such group theory on the com-
puter simply and exactly, even for situations where the ocal
axes are rotated without having to deal explicitly with the
Euler angles. This method and generalizations provide a
way to deal with much of the necessary group theory needed
in electronic structure calculations.
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